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Finite-dimensional representations of quantum affine 
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Abstm$ We give a practical method for the canswction of finite-dimensional representations 
of U4 (5). where G is a non-twisted affine KSOMoody algebra with no derivation and zero central 
charge. It is well known that the finitedimensional representations of a quantum group Uq(@ 
at generic q are simply deformations of the corresponding imps of the classical Lie algebra 
G. This is. however, no 1o!ger we when one goes over to an affine KaoMoody algebra 5 
and its q-deformadon Uq(G). In most cases it is necessary to t3ke the direct sum of several 
irreducible U,(G)-modules to form an irreducible Uq(C?)-module which then becomes reducible 
af q = I .  We illustrate OUT technique by working out explicit examples for 0 = and 
D = &, These finitedimensional modules may. for example, determine the multiplet s ~ c t u r e  
of quantum solitons in affine Todo theory. 

1. Introduction 

One reason for the importance of quantum algebras U&) in mathematical physics is their 
relation to the Yang-Baxter equation: each intertwiner (R-matrix) for the tensor product 
of two finite-dimensional representations of a quantum algebra provides a solution to the 
quantum Yang-Baxter equation [I-51. 

There are at least two areas where  it^ is important to know solutions of the spectral- 
pnrameter-dependent Yang-Baxter equation. One is integrable lattice models; where 
the existence of commuting transfer matrices follows if the Boltzmann weights satisfy 
the spectral-parameter-dependent Yang-Baxter equation. The other is massive integrable 
quantum field theories where the spectral-parameter-dependent Yang-Baxter equation is the 
consistency condition of the two-particle factorization of the scattering matrix. The spectral 
parameter in this casevis the rapidity of the particles. 

The R-matrices R& for U,(G), where g is a finite-dimensional simple Lie algebra, 
provide solutions to the Yang-Baxter equation without a spectral parameter. Here a, b are 
the labels of the representation spaces V,, Vb, i.e. i;uh is the intertwiner: V, @ Vh + vh@ V,. 
The interesting question is: when can a spectral parameter be introduced into i a h  so as to 
obtain a solution of the spectral-parameter-dependent Yang-Baxter equation. F e  answef 
is: whenever V,, vh also carry representations of the quantum affine algebra U&?). Here G 
is the affine algebra B @ @(x.  x - I ) .  The parameter n then consistently provides the spectral 
parameter [1-5]. 
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This paper is devoted to studying in which cases this affinization is possible, i.e. which 
finitedimensional representation spaces of U&) also carry representations of U,(b). 

For 8 = A,, all representations are afFinizable [3] (see also the appendix in [6]).  For 
other algebras this is not the case. Frenkel and Reshetibin [7] state that 'one generaIly has 
to enlarge (an irrep) V, by adding certain 'smalIer' irreducible representations in order to 
extend the resulting representation to U,(&. An explicit description of this extension is an 
important open problem'. Such a description is still lacking. In this paper we will develop 
a method to give such a description in particular cases: 

We begin in section 2 by defining U,,(G) and U&). Then in section 3 we give some 
concrete examples where two irreps of U,, (8) have to be added together to obtain an irrep 
of U,(@. The first example we choose is the 10-dimensional representation of U,(Cz) 
which has to be enlarged by the singlet representation to give an 11-dimensional irrep of 
U,(&). The second one is the 14-dimensional representation of U,(Gz) which again has 
to be enlarged by the trivial representation to give a 15-dimensional imp  of U,,(6,). In 
section 4 we present our general procedure for obtaining irreps of U,(&). Our method is 
based on the reduction of tensor products of smaller representations. It is therefore very 
much in the spirit of the fusion procedure used to construct rational 181 and trigonometric 
[3] R-matrices. The technical device which we will use is the tensor product graeh [9]. In 
section 5 we illustrate our general method again in the cases of U,(&) and U,(Gz). 

Our physical motivation for this study of finite-dimensional representations of quantum 
affine algebras comes from the desire to gain a better understanding of the solitons in affine 
Toda quantum field theory. These solitons transform in such representations and we will 
come back to that point in the discussions in section 6. 

Finite-dimensional representations of quantum affine algebras have recently been studied 
by Chari and Pressley [lo-141. 

2. Definition of quantum algebras 

A simple Lie algebra 8 is defined through its simple roots ai, i = 1 . . . r by the following 
relations between its Chevalley generators hi, ei, fi. i = 1 . . . r 

[hi, ejl = (ai, ajkj  [hi, f j l  -(ai> aj)fi 

(ad ei)'-";jej = 0 

where aij = 2(ai. aj)/(a;, ai). The universal enveloping algebra U(G) is the algebra 
generated freely by the Chevalley generators modulo the relations (2.1). The quantum 
algebra U,,(g) is a deformation of this [1,2] where equation (2.1) is modified to 

Lei, f j l  = &jhj (2.1) 
(ad fi)'-"!j f. J -  - 0 (i # j )  

[hi, ejl = (ai, q ) e j  
tei, f j l  = Sij[hjIq (2.2) 

[hi, f j l  = -(ai, q)fj 

(ad c)'-"iie. - - 0 (ad f.)l-uQ'f. -0  (i # j ) .  Y 1  Y '  J -  

We have introduced the notation 
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The most important feature of this deformation is that it is still a Hopf algebra. The deformed 
comultiplication is 

A(hi) =hi 4 1 + 1 0 hi 

A(ei) = ei 4 qh,/' + q-'J/' 4 ei (2.5) 

The finite-dimensional representations of U,(G) have been studied by Ross0 [U] and 
Lusztig [16]. They found that, for q not a root of unity, the representation theory of U,(G) 
is exactly analogous to that of 8. Each finite-dimensional irreducible 9-module also carries 
an i m p  of U,(G) and the ineps of U&) are simply deformations of those of 9. 

Non-twisted affine Lie algebras 8, as defined by Kac [17],~can be realized as 8 = 
8 4 C(x, x - ' )  Q Cc Q Cd, where C(x, x- ' )  is the algebra of Laurent polynomials in x ,  
c is a central charge and d is a derivation. In this paper we are only interested in the 
algebra 8 = 9 4 C(x, x - ' )  QCc obtained from 6 by dropping the derivation. The algebra 
with derivation does not have finite-dimensional representations. Following a widespread 
custom in the literature we will also call the algebra 4 an affine algebra. From a finite- 
dimensional representation s of 6 one can easily obthn a loop representation of the algebra 
with derivation 8. 

To generate the affine algebra 6 it is sufficient to add one more pair of raising and 
lowering operators and one more Cartan subalgebra generator to the Chevalley basis, namely 

e o =  f * S x  f o = e t @ x - '  ho=(c-hht)@l  (2.6) 

A(J) = f i  4 qhrJ2 + q-hi /z@ j$. 

where I) is the highest root of 9 and e t ,  f* are the corresponding raising and lowering 
operators [17]. The new Chevalley generators again satisfy the relations (7..1), this time 
with i, j = 0..  . r  and a0 = -I). The central charge c will play no role in this paper 
because it is represented as zem on all finite-dimensional modules. 

The quanfum affine algebra U,@) is defined analogously by the relations (2.2). There 
is one important difference between U ( &  and U,&, i.e. between the classical and the 
quantum case. Classically eo and fo are elements of U ( 8 )  4 C(x, x - l ) ,  see equation (2.6), 
and thus 

U(& = U ( 9 )  4 C(x, x-1) @ Cc. (2.7) 
In the quantum case however, generically eo and fo are not elements of Uy(G)4C(x, x- ' ) ,  
as will be seen in the next section. Thus 

U,t8, # u4(9 )4C(x ,x - ' )QCc .  (2.8) 
The only known exceptions to this are 9 = A, [3] (see also the appendix in [6] for details). 

Because of equation (2.7), any U(G)-module is also a U(G)-module on which x and c 
are represented trivially. This is no longer true in the quantum case. Some representations 
spaces of U,(O) may not carry a representation of eo and fo. Obviously those and only 
those representations spaces which cany a representation of eo and fo c q  a representation 
of U,(@. It is the aim of this paper to construct such representations. 

3. Examples of representations 

As mentioned, it is known that eo is not an element of U,,(g) @C(x,x-')  in general. Here 
we will illustrate this fact by giving some simple and explicit examples of representation 
spaces of U,(B) which do not cany a representation of eo and fo. As we will see, one 
usually has to take a direct sum of two or more irreps of U&) to form an irrep of U,(&. 
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The first simple example is the IO-dimensional irrep of V,(Cz). Cz has two simple 
roots 011 and 012 which satisfy 2(011, 011) = (012, 012) = -2(orl, 012) = -2(01~, 011) = 2. The 
IO-dimensional rep-esentation is the adjoint representation and its weights are the roots 
(%I + 0 ~ 2 , 0 1 1  + 012, 011, 012, O,O, -012, -011, - 1 ~ 1  - 012, -Zai - 012). The matrix forms of 
h ~ ,  hz, el and e2 in this representation are 

e2 ='fi = e a  + e35 + e58 + e79 + (PI, - 1)'/'(e16 + e68) 

where t stands for transpose and eij is the matrix with 1 in entry i, j and 0 elsewhere. 
One would now like to find two other matrices eo and fo which satisfy the defining 

relations (2.2). One can make a general ansatz and then at first impose all relations except 
[eo, fo] = [ho& and the q-Sene relation involving eo and fo. At this point one finds that 
eo and fo are already completely determined up to an overall constant. Unfortunately they 
do not satisfy [eo, fo] = [holy and the q-Serre relations, and this shows that this irrep of 
U,(Cz) cannot be extended to a representation of U,(&). 

Next we consider a direct sum of the IO-dimensional irrep with the trivial one 
dimensional representation. For this 1 I-dimensional reducible representation of U,(Cz), 
the matrix form for hl, hz, el and ez looks the same as above. Now it is possible to find 
matrices eo and fo satisfying all of  the^ relations (2.2): 

eo = .fd = e51 + e72 + e94 + e10.5 - ([21, - 1)-1/z(e61 + e10.6) 

This representation of U,(&) is seen to be irreducible. It becomes reducible at q = 1, as 
can be seen from the coefficient of the last term. 

The second example we want to give is the 1Cdimensional irrep of U,(Gz). The simple 
roots of GZ are 011 and 012 which satisfy (011, 011) = 3(01~, orz) = -2(011, 012) = -Z(a2, 0 1 ~ )  = 
6. The 1Cdimensional representation is the adjoint representation with weights equal to 
the roots (2011 + 3012, 0 1 ~  + 3a2, 0 1 ~  + 2Lxz.~1 + 0 1 ~ ,  0 1 ] ,  orz, 0, 0, -O1z, -011, - O1z, - 
2012, -W -3%- -2ai-301~1. The matrix forms of hl, hz, el and ez for the 14-dimensional 
irrep of U,(Gz) are 

hi = 3e11 - 3ezz + 3e44 + 6e55 - 3ea + 3e99 - 6el0.10 - 3el1.11 + 3e13.13 - 3e14.14 
hz = 3ezz + e33 - e a  - 3e55~+ 2e66 - 2e99 + 3elo.10 + ell.L1 - e12.12 - 3els.13 

el = f; = PI ,  (e12 + e a  + e9.11 + e13.14) + ; ; ; i i ~ ( e s s  + e8.10) 
1/2 [31, 

(3.3) 

e2 = A = [31:/~(ez3 + e45 + ~ I O , I I +  eiz.i3) + (t31, + 1)%% + eli.iz) 

+ [zI:/%as + ~ 9 ) .  

Again it can be shown that this irrep of U,,(Cz) cannot be extended to a representation of 
U,(&). Next we consider the direct sum of this irrep with the trivial representation of 
U,(Gz). Obviously the matrix form of hl, hz, el and ez for this 15-dimensional reducible 
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representation are the same as (3.3). It turns out that this reducible representation can be 
extended to an irrep of U,(&). The explicit expressions for eo and fo are: 

(3.4) 

which defines a 15-dimensional irrep of Uq(82). This irrep becomes reducible only when 
q = 1. 

4. General construction 

Because eo does not exist as an element in U,(G) O C(x, x - I ) ,  we will have to construct 
n(eo) for each representation n separately. Clearly we cannot proceed as in the previous 
section but need a general construction. 

Let VA be an irreducible finite-dimensional G-module and T A  : U,,@ -+ End(VA) the 
representation of U,@ which it carries. Assume that on this module it is possible to define 
nA(e0) and zA(f0) and thus make it into an irreducible representation of U,(&. We start 
with this irrep and want to construct, using it, further irreps of U,@). To this end we look 
at the tensor product VA O Vi which carries  the U,(G)-representation 

n(g) = (~TA OndA(g) g E uy(G). (4.1) 

VA @ VA = @ vw. 

This is a reducible representation of U@) and it is known that the decomposition into 
imps is the same as in the classical case [15,16]: 

(4.2) 
P 

We want to see on which of these irreducible modules V, or on which direct sums of them 
we can define irreps of U,@). It can be checked that the following defines a representation 
of U,(& on VA o vA: 

img) = n(g) g E (4.3) 
n4(eo) = (RA o nh)(eO 8 qh~~’2 + aq-ho/z 8 eo) (4.4) 
n “ ( j ~  = (TA o nA)(fo o qk” +a-1q-h11’2 o fo) (4.5) 

(4.6) 

for any choice of the parameter a E C. We will see that for generic value of a the 
representation nu is irreducible but that it becomes reducible for special values and at these 
values we can define irreducible representations on submodules of VA 0 VA. 

To visualize the reducibility of the representation W we  describe it by a duected = p h .  
A similar graph, called the tensor product graph, was first introduced in [9] and we will 
rely heavily on ideas from that papert. 

t Examples =e the ’undeformed’ representations for Uq@) with G = A,, B., C,, D., E6 and Er, which are 
affiniznble. that is eo and f i b  exist for those &presentations, and the minimal representaiions for Uq(Gz) and 
Uq(Fq), which are deformed~representations but nevertheless are affiniznble. 
t The notion of a tensor product graph has also been introduced in [IS]. 

n”(h0) = (ZA @ nA)(hO 8 1 + 1 @ h0) 
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Definition 1. The reducibilify graph G" associated with the representation nu of U,,(& 
is a directed graph with vertices that are the irreducible G-modules V, appearing in the 
decomposition (4.2) of VI @ V,. There is an edge directed from a vertex V, to a vertex V, 
iff 

G W Delius and Yao-Zhong Zhang 

P, U' (eo) Pv # 0 or P, n" (h)PU # 0 (4.7) 
where P, is the projector from V, @ V, onto V,. 

1 14 21 I 

Figure 1. The reducibility graph G" for lhe 7 t3 7 of U9(Gz) at a = U-'. The vertices are 
labelled by the dimension of the corresponding irrep of U9(Gz). 

For an example of a reducibility graph, see figure 1. According to the definition, an 
arrow from V, to V, indicates that n'(e0) or W(fo) can bring us from the module V, to 
the module V,. This implies that a U,(&submodule of Vi @ V, which contains V, also 
has to contain V,. In other words, the U&-submodules are described by those subgraphs 
from which no arrows point outside that subgraph. We formulate this in the next definition 
and theorem. 
Definition 2. A subgraph G' of a graph G is called 

from V, to V, and from V, to V,; 

connected if any edge is removed; and 

Theorem 1. Every closed subgraph G' of a reducibility graph G" defines a representation 
(V', n') of U,,@). The representation space V' is the direct sum of the irreducible G- 
modules corresponding to the vertices in G' 

, ,  

(i) two-way connected if for any pair V,, V, of veaices in G' there exist directed paths 

(ii) simply WO-way connected if  it is two-way connected and becomes non-two-way 

(iii)' closed if there is no edge pointing from any vertex in G' to a vertex outside G'. 

V ' =  @ v,. (4.8) 
V,.EG' 

Let P' be the projector from V, @ VA onto V': P' = 

n' : U,(& -+ End(V') is given by 

If the subgraph G' is two-way connected then the representation z' is irreducible. 

Proof. We only need to show that equation (4.9) defines a representation using the fact 
that nu does. This becomes trivial with the following observation: because G' is closed, 
we know that nu (e0)u' E V' for all U' E V' and similarly for fo. Also n" (g)d E V' For all 
g E V,(G) because V' is a sum of U&)-modules. Together this gives that ilL?(g)u' E V' 
for all g EU,,(G). Combining this with P'u' = U' we have that P'n"(g)P' = n"(g)P' 
and therefore the projectors P' can be pulled outside in checking that the relations (2.2) are 
satisfied. The irreducibility of n' follows immediately from the two-way connectedness of 
G'. 0 

Pp. The representation map 

n ' (g )  = P'rI"(g)P' g E U,(6). (4.9) 
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Applying this theorem to the example in figure 1 we see that there is a 15-dimensional 
irreducible representation of U,,(&). This reproduces the representation which we found 
in section 3. 

The usefulness of theorem 1 lies in the fact that the reducibility graph encodes the 
reducibility of the tensor product and can, in most cases, easily be constructed using 
only elementary Lie-algebra representation theory. The facts needed for this purpose are 
contained in the following lemmas. 

Lemma 2. The reducibility graph G" is two-way connected for generic values of a .  It can 
be non-two-way connected only if 

a = q[c(u)-cgl)l/2 (4.10) 

where C(1) = (A, A +. 20) is the value of the quadratic Casimir on VA. 

Proof. Here we can follow [9], which defined a similar graph. For clarity we first consider 
the classical case q = 1. To make the notation simpler we will from now on drop the~n, 
and write simply ei instead of nA(ei) etc. V, was irreducible by definition. Thjs means that 
by repeatedly acting with the tensor operators T = {g @ Ilg E G )  and f = 11 @ glg E G )  
we can obtain any vector in V, @ VA Iiom any other. In particular these tensor operators 
connect together all irreducible G-modules V, contained in VA @ VA. Now eo @ 1 and 1 @eo 
are just the lowest components of these tensor operators (because at q = 1, eo = f9) and 
therefore also connect together all modules V,. Furthermore eo @ 1 by itself or a linear 
combination of eo @ 1 with 1 @ eo will suffice because of. the proportionality 

(4.11) 

which follows from the fact that P, commutes with eo @ 1 + 1 €3 eo. This shows for q = 1 
that il'(e0) = eo @ 1 + a1 @ eo connects all irreps in VA @ V, unless a = 1. At a = 1, 
P,n'(eO)P, is always zero according to equation (4.11). Exactly the same can be said 
about fo. Thus at q = 1 G" is two-way connected except at a = 1 where it is completely 
disconnected. This complete disconnectedness at a = 1 implies, according to lemma 1, 
that every imeducible G-module appearing in the tensor product carries a representation of 
U(&, which we had observed already in section 2. 

The fact that the reducibility graph is two-way connected for generic values of a in 
the classical case q = 1 implies that this is also true in the quantum case q # 1. This 
is so because an edge which is present at q = 1 cannot be absent for q # 1. Otherwise 
P,n"(eo)P, would not have a smooth limit as q + 1. This proves the first statement of 
the theorem. 

To determine the non-generic values of a at which the reducibility graph may be non- 
two-way connected we use the quantum analogue of equation (4.1 I): 

&',(eo @ 1)P" = -P,(l @ eo)Pu (at q = 1) 

q c ( " ~ z ~ , ~ , ( e o  q"n'2)p, = q C ( " % v ~ , ( q - h ~ ~ ~ z  @ eo)Pv 
(4.12) 

where eIL is the parity of the representation V, in VA @ V,. To derive equation (4.12) 
consider the kmatrix on V, @ VA. According to Jimbo it is determined by the equations 

4 C"l'~z€,P,(q-h"~z @ f0)P" = qC(%"P,(f, @ qh"/Z)P, 

Dl 

l i(x)(xeo 8 q * ~ ~ / *  + q-hll/z @ eo) = (eo 8 qkcl/z + q-"/' @ x e o ) i ( x )  
n(A(a))l = 0 Vu E 

(4.13) 

d(x ) (x - ' f o  @ q*,,/z+q-ho/z@ fo) = (fo @ qh"/Z+ q-h"'Z@x-1fo)R(x) .  
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In the limit x + 0 one obtains~ the spectral-parameter-independent fi-matrix and 
equation (4.13) reduces to 

G W Delius and Ym-Zhong Zhang 

where d is given by the formula 

(4.14) 

(4.15) 
(4.16) 

(4.17) 

This was proved in the case where VAGI VA is multiplicity free by Reshetikhin [19]i and in 
the general case by Gould [ZO]. By inserting equation (4.17) into equations (4.15) and (4.16) 
and multiplying by PP from the left and by Pu from the right we obtain equations (4.12). 

Comparison of equation (4.12) with equations (4.4) and (4.5) immediately provides the 
second statement of the theorem, provided cPcY = -1. To see this latter fact we observe 
that the permutation mahix U (defined by u ( v 8 u ' )  = ( u ' 8 u ) )  satisfies PPu = upP = cPPP 
and thus 

(4.18) 
U 

P,(eo 8 l)P, = PPu(18 eo)uP, = E ~ E ~ P ~ ( I  8 eo)P,. 
Comparison of this with equation (4.11) gives E ~ E ,  = -1. 

(4.19) 
(4.20) 

Proof: The proof uses the concept'of tensor operators. These are well explained in 
appendix B of [9]. There it is also shown that X = q-""'eo 8 1 is the lowest component 
of an adjoint tensor operator$. This implies that the vector Xu, for U, E V, must lie 
in a representation V, which is contained in Kdj 8 V,. The same therefore is true for 
(eo 8 q""/2)u, z A(qh"/2)Xu,. Similarly also f = 1 8 qhO&o is the lowest component of 
an adjoint tensor operator and thus also (q-hfl/lZ8eo)u, must lie in a representation which is 
contained in Vdj 8 V,. This is therefore also m e  for n'(eo)u, and equation (4.19) follows. 
Using similarly that qh"/2fo 8 qh" and q-hn @qhuu'2fo are the highest components of adjoint 

U 

This lemma prompts us to define another directed graph associated with the tensor product 

Definition 3. The tensor pmduct graph r associated with a tensor product VA 8 VA 
is a directed graph with vertices that are the irreducible G-modules appearing in the 
decomposition (4.2) of V, 8 VA. There is an edge directed from vertex V, to a vertex 
V, iff 

(4.21) 

tensor operators, one shows equation (4.20). 

VA 8 VA. 

vp c vadj 8 vv. 
Combining lemmas 3 and 2 we arrive at: 

Lemma 4. If the tensor product graph r is simply two-way connected then it is equal to the 
reducibility graph GY for generic value of a. 

t Our R is the inverse of the R-mUix in this reference. 
When comparing with [9] o m  should replace q by q-I because [91 uses the apposite coproduct. 
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Proof. According to lemma 3 the tensor product graph contains every edge that is contained 
in the reducibility graph. If the tensor product graph is simply two-way connected then the 
reducibility graph has to contain all its edges, otherwise it could no longer be two-way 
connected and would violate lemma 2. ~. 0 

Lemma 4 is very useful in constructing reducibility graphs because it is easy to construct 
tensor product graphs. Many worked-out examples of undirected tensor product graphs can 
be found in [9]. To obtain  the directed tensor product graph as defined in definition 3 
from the undirected graphs in [9] one has to replace every undirected edge by two directed 
edges in opposite directions. Many known examples are simply two-way connected and so 
lemma 4 applies. But even when the tensor product graph is multiply connected we still 
have the following theorem: 

Theorem 5. Let VA be an irreducible G-module which carries a representation n,, of U,,(&. 
Let I? be the tensor product graph associated with VA @ VA. Let G‘ be any simply two-way 
connected subgraph of r which can be made closed by deleting just one directed edge from 
r. Let V, be the origin and V, be the destination of this edge. Let a = q(‘(”)-‘(fi))/’. 

Then G’ is a closed two-way connected.subgraph of the reducibility graph G‘ and 
carries an irreducible representation of U,,(& as in theorem 1. 

Proof. The proof that G’ is a subgraph of the generic reducibility graph is similar to the 
proof of lemma 4. The reason why it is a’subgraph of Gn for the particular a is that 
according to lemma 2 at this a the reducibility graph loses the edge directed from V, to V,. 

0 

Theorem 5 is very easy to apply in practice and we will demonstrate its use in the next 

G’ defines an irreducible representation because theorem 1 applies. 

section. 

5. Specialization to U,(&) and U,(G2) 

5.1. U&,) 

The fundamental four-dimensional irrep of U,,(C’) is undeformed and can be extended to an 
irrep of U,,(&). We will use theorem 5 to construct further irreps of U,,(&) from the tensor 
productt 4 8 4 = 10 @ 5 @ 1. The associated tensor product graph is shown in figure 2. 
Because it is simply two-way connected it also ‘gives the generic reducibility graph. The 
numbers associated with the edges in figure 2 are the values of a from theorem 5, i.e. the 
values at which the edge disappears from the reducibility graph. They are determined, using 
equation (4.10), from C(1) = 0, C(5) = 4, C(10) = 6. 

We read off from the graph that nu defines a five-dimensional irrep of U,,(&) a? 
a q-’ , a one-dimensional irrep at a = q-3,  a (10 + 5 )  = 15-dimensional irrep at a = q3 
and a 10 + 1 = 11-dimensional irrep at a = q’ ,  besides of conrse the 10 + 5 + 1 = 16- 
dimensional irrep at generic a .  We note, in particular, that because the IO-dimensional 
irrep of U,,(C,) appears in the middle of the tensor product graph, there is no possibility 
of having the IO-dimensional~irrep in a closed component by itself and thus no irrep of 
U q ( t z )  can be defined on it by itself. The 10 has to be enlarged by adding either the 1, 
the 5, or both, before it carries a representation of U,,(&). This reproduces our observation 
from section 3. 
t We denote the Uq(Cz) ineps by their dimension. 
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4-' q3 

Figure 2. The tensor product graph for the 4 @4 of Uq(C2). 

We can also derive the representation matrices (3.1), (3.2) from the general expression 
(4.9). For this we only need to aetengine the q-Clebsch-Gordan coefficients of Uq(C2) for 
the decomposition of the 4 @  4. These can easily be calculated by elementary methods. We 
did this using M A ~ M A ~ c A .  

Contrary to the IO-dimensional irrep of U,,(Cz), the fivedimensional irrep can cany 
an irrep of U,,(&) by itself. We can repeat the above analysis for the tensor product 
5 @ S = 14 @ l o @  1. The associated tensor product graph is shown in figure 3. The 
iruncation values shown above the edges are determined from the Casimir values given 
earlier and C(14) = 10. 

q2 43 

14 c2 10 
4-3  

1 

Figure 3. The tensor product graph for the 5 @ 5 of U,,(Cz). 

We see from the graph that the 14-dimensional irrep of Uq(Cz) can carry an irrep of 
Uq(&), but that again the 10-dimensional irrep of Uq(C2) needs to be extended, either by 
the 1 or by the 14, again reaffirming our observation from section 3. We may continue the 
above procedure using the 14-dimensional irrep and get higher irreps of U,,(&). 

5.2. Uq(Gz) 

The second example from section 3, the 14 + 1 = ls-dimensional irrep of U,,(&), can be 
derived from the tensor product 7 @ 7 = 27 @ 14 @ 7 @ 1, the associated tensor graph of 
which is shown in figure 4. 

Again the tensor product graph is simply two-way connected and is therefore equal to the 

q8 q-lz  

1 4l2 14 q2 27 4-* 7 

Figure 4. The tensor product graph far the 7 @ 7 of Uq(C2) 
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generic reducibility graph. The value of a at which an edge vanishes from the reducibiliry 
graph are given in the figure. They were determined from C(1) = 0, C(14) = 24, 
C(27) = 28, C(7) = 12. At a = q-2 it truncates to the reducibility graph of figure 1, 
which describes-the 14 + 1 = 15-dimensional representation of in  (3.3), (3.4). Various other 
irreducible U,(G$modules can be read directly from the other possible truncations of the 
graph. 

6. Discussion 

In this paper we have described a practical procedure for constructing finite-diiensional 
representations of quantum affine algebras Uy(8). This construction relies on the reduction 
of tensor product representations. We have introduced the concept of a reducibility graph 
which encodes the information about which irreducible U&)-modules have to be taken 
together in order to obtain an irreducible U,(&) module. In practice we exploit the relation 
of the reducibility graph to another graph, the tensor product graph, which can be constructed 
by elementary means of classical representation theory. 

Recently finitedimensional representations of quantum affine algebras have been studied 
by Chari and PresSley [10-14]. They use a different approach based on Drinfeld's second 
realization [21] in which the finite-dimensional representations are viewed as highest-weight 
representations. This approach has the advantage that it leads to a classification of all 
finite-dimensional representations. However; little detailed information about the individual 
representations can be obtained easily. In particular, the information on the relation of 
the U,(& representations to the known representations of U,(G) remains hidden in that 
approach. 

The construction in the abovesections can be extended to the case of the tensor product 
V, c3 VAt with h f A'. 

As mentioned in the introduction, given any two finite-dimensional representations 
of U,@) one can write down a spectral-parameter-dependent R-matrix. One method 
of doing this, applied in [6], is to insert the matrix forms of the generators in the 
particular representations into the formula for the universal R-matrix. The advantage of this 
method is that it is totally irrelevant whether the representation is reducible or irreducible, 
whether the tensor product decomposition is multiplicity-free or with finite multiplicity (the 
tensor product decomposition of reducible representation with itself is always with finite 
multiplicity) and whether the representations being teusored are the same or different. The 
disadvantage is, however, that this method requires the explicit form of the universal R- 
matrix, given in [22], and of eo (fo). 

Because of this relation between the existence of a representation of U,(&) on particular 
U, (@modules and the existence of the spectral-parameter-dependent R-matrices for those 
modules, our work is related to many works on the construction of R-matrices. In many 
of these works it has been noticed that often R-matrices can only be constructed on sums 
of several irreducible U,,(G)-modules becauses only those sums of U,(G)-&odules cany 
representations of U,(& 

The problem of constructing finite-dimensional representations also exists for the 
Yangians Y(G),  which give the rational solutions to the Yang-Baxter equation. The first 
paper on the problem [I] py Drinfeld has already addressed the problem. Drinfeld is able to 
give a sufficient but not necessary condition for determining whether irreducible 8-modules 
can carry representations of Y (8). The relation to this paper lies in the fact that the rational 
R-matrices of the Yangian Y(8) can be obtained from the trigonometric R-matrices of the 
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quantum affine algebra U,@) in a limit and therefore all 8-modules which we determine 
to carry representations of U,(& should also cany representations of Y(G). 

Our physical motivation for studying the finite-dimensional irreducible representations 
of quantum affine algebras comes from the study of the solitons in affine Toda quantum 
field theory. Let us explain briefly. 

It is well !mown that associated with every affine Lie algebra 4 there is a (1 + 1)- 
dimensional affine Toda field theory, denoted T(&. It is described by the field equations 

G W Delius and Yao-Zhong Zhang 

where p is the coupling constant and the cui are the simple mots, c u ~  = - C:=, n p i .  For 
6 = AY) equation (6.1) specializes to the s indordan  (or affine Liouville) equation. 

The &ne Toda theory T(6) possesses syqmetry generators ei, fi, hi, i = 0,1, . . . , c. 
which generate the quantum affine algebra U,@') [231. Here 8 is the dual Lie algebra to 8, 
i.e. it is obtained by interchanging the roles of the roots and the coroots. The deformation 
parameter q is determined by the coupling constant as q = exp(-br/p2). The central 
charge is zero. 

The field equations (6.1) have soliton solutions. There exists a very elegant-construction 
of these solitons using the representation theory of the affine Lie algebra 9' [24]. The 
solitons are found to be arranged in multiplets given by the fundamental representations of 
8' (representations with a fundamental weight as highest weight). 

In quantum theory the classical soliton solutions give rise to particle st+tes and we 
are interested in the properties of these quantum solitons. Related work for 8 = aL1) has 
been done by Hollowood [25]. The quantum solitons have to transform in finite-dimensional 
multiplets of the symmetry algebra U,(&). This paper can be seen as providing some of the 
necessary mathematical knowledge for extending the elegant goup theoretic understanding 
of the classical solitons to the quantum level. An immediate outcome is that there are often 
more quantum solitons than expected. We saw a concrete example: the solitons transforming 
in the second fundamental representation of U, (Gz) (the 14-dimensional representation) 
have to be completed by an additional soliton to make up the 15-dimensional multiplet of 
U,(&) described by equations (3.3) and (3.4). 

We would like to refer the reader who is interested in more details about the connection 
between quantum affine algebras and the solitons of quantum affine Toda theories to 
reference [26]. There, in particular, the masses of the soliton multiplets are determined 
from quantum affine algebras. 
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